Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(5)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37241551

RESUMO

Miniaturized energy storage devices with superior performance and compatibility with facile fabrication are highly desired in smart microelectronics. Typical fabrication techniques are generally based on powder printing or active material deposition, which restrict the reaction rate due to the limited optimization of electron transport. Herein, we proposed a new strategy for the construction of high-rate Ni-Zn microbatteries based on a 3D hierarchical porous nickel (Ni) microcathode. With sufficient reaction sites from the hierarchical porous structure as well as excellent electrical conductivity from the superficial Ni-based activated layer, this Ni-based microcathode is featured with fast-reaction capability. By virtue of facile electrochemical treatment, the fabricated microcathode realized an excellent rate performance (over 90% capacity retention when the current density increased from 1 to 20 mA cm-2). Furthermore, the assembled Ni-Zn microbattery achieved a rate current of up to 40 mA cm-2 with a capacity retention of 76.9%. Additionally, the high reactivity of the Ni-Zn microbattery is also durable in 2000 cycles. This 3D hierarchical porous Ni microcathode, as well as the activation strategy, provides a facile route for the construction of microcathodes and enriches high-performance output units for integrated microelectronics.

2.
Small ; 19(36): e2301913, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37127853

RESUMO

The rise of flexible electronics calls for efficient microbatteries (MBs) with requirements in energy/power density, stability, and flexibility simultaneously. However, the ever-reported flexible MBs only display progress around certain aspects of energy loading, reaction rate, and electrochemical stability, and it remains challenging to develop a micro-power source with excellent comprehensive performance. Herein, a reconstructed hierarchical Ni-Co alloy microwire is designed to construct flexible Ni-Zn MB. Notably, the interwoven microwires network is directly formed during the synthesis process, and can be utilized as a potential microelectrode which well avoids the toxic additives and the tedious traditional powder process, thus greatly simplifying the manufacture of MB. Meanwhile, the hierarchical alloy microwire is composed of spiny nanostructures and highly active alloy sites, which contributes to deep reconstruction (≈100 nm). Benefiting from the dense self-assembled structure, the fabricated Ni-Zn MB obtained high volumetric/areal energy density (419.7 mWh cm-3 , 1.3 mWh cm-2 ), and ultrahigh rate performance extending the power density to 109.4 W cm-3 (328.3 mW cm-2 ). More surprisingly, the MB assembled by this inherently flexible microwire network is extremely resistant to bending/twisting. Therefore, this novel concept of excellent comprehensive micro-power source will greatly hold great implications for next-generation flexible electronics.

3.
Nanomicro Lett ; 15(1): 49, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36780011

RESUMO

Conducting polymers have achieved remarkable attentions owing to their exclusive characteristics, for instance, electrical conductivity, high ionic conductivity, visual transparency, and mechanical tractability. Surface and nanostructure engineering of conjugated conducting polymers offers an exceptional pathway to facilitate their implementation in a variety of scientific claims, comprising energy storage and production devices, flexible and wearable optoelectronic devices. A two-step tactic to assemble high-performance polypyrrole (PPy)-based microsupercapacitor (MSC) is utilized by transforming the current collectors to suppress structural pulverization and increase the adhesion of PPy, and then electrochemical co-deposition of PPy-CNT nanostructures on rGO@Au current collectors is performed. The resulting fine patterned MSC conveyed a high areal capacitance of 65.9 mF cm-2 (at a current density of 0.1 mA cm-2), an exceptional cycling performance of retaining 79% capacitance after 10,000 charge/discharge cycles at 5 mA cm-2. Benefiting from the intermediate graphene, current collector free PPy-CNT@rGO flexible MSC is produced by a facile transfer method on a flexible substrate, which delivered an areal capacitance of 70.25 mF cm-2 at 0.1 mA cm-2 and retained 46% of the initial capacitance at a current density of 1.0 mA cm-2. The flexible MSC is utilized as a skin compatible capacitive micro-strain sensor with excellent electromechanochemical characteristics.

4.
Phys Chem Chem Phys ; 24(44): 27157-27162, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36345725

RESUMO

Two-dimensional MXenes have become a crucial topic in the field of ion transportation owing to their excellent electrochemical performance. Herein, a strategy for preparing a layered MXene-graphene oxide (GO) membrane via vacuum filtration is proposed, which endows the delaminated two-dimensional MXene-GO membrane (MGOm) with excellent electrical conductivity and chemical stability, achieving an excellent voltage-gated ion transport behavior. Owing to the presence of charges or dipoles within the membrane's channel, the movement of electrons or dipoles under the influence of membrane potential is possible. By varying the transmembrane potential, the transition between the closed and open states of the voltage-gated ion channel can be adjusted. When a negative potential is applied at osmotic pressure, the force between the charged MGOm sheet and the cation (K+) is enhanced, promoting ion permeation. Conversely, the application of positive potential attenuates electrostatic attraction, resulting in a decrease in ion permeability. In addition, the effects of MXene and GO with different modulation ratios on the voltage-gated ion transport have shown that when the modulation ratio of MXene : GO is 7 : 3, the optimal ion permeation rate is achieved. In conclusion, the conductive film with voltage-gated nanochannels is a promising alternative for ion transportation, opening up new avenues for the further exploration of MXene materials in energy storage devices.


Assuntos
Grafite , Transporte de Íons , Membranas , Condutividade Elétrica
5.
Micromachines (Basel) ; 13(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36295979

RESUMO

In this work, we demonstrated a novel and low-cost full-range optical coherence tomography (FROCT) method. In comparison with the off-pivot approach, which needs precise control of the deflecting distance and should be adjusted for different situations, our proposed method is more flexible without regulating the system itself. Different from the previous systems reported in the literature, which used a high-cost piezo-driven stage to introduce the phase modulation, our system utilizes a cost-effective voice coil motor for retrieving the complex-valued spectral signal. The complex-valued data, with a twofold increase in the accessible depth range, can be calculated using an algorithm based on the Hilbert transform and Dirac delta function. To confirm the effectivity of our method, both simulation and experiments were performed. In particular, for the in vivo experiment, we presented the FROCT result of a fingernail fold, demonstrating the availability of in vivo imaging. Since the key element of our system is a low-cost voice coil motor, which is flexible and more accessible for most of the clinics, we believe that it has great potential to be a clinical modality in the future.

6.
Micromachines (Basel) ; 13(8)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36014206

RESUMO

The aspheric light emitted from a pinhole restrains the reconstruction quality of a digital in-line hologram. Herein, the Fresnel-diffracted spot from the first step converging spherical wave diffracted at a rough circular aperture is collimated and expanded to generate an even plane wave, which is converged again by an objective lens and matching a minimum aperture while the central spot is varying from light to dark. We observed that the collected background hologram is filled with a round spot with high contrast as an ideal spherical wave. The resolution board and biology experimental results demonstrated a distinctively reconstructed image without any image processing in a single exposure. The adjustable field of view and magnification, single exposure, and noncontact make it suitable for an online microscope.

7.
Nanoscale Adv ; 3(22): 6271-6293, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36133490

RESUMO

The continuous expansion of smart microelectronics has put forward higher requirements for energy conversion, mechanical performance, and biocompatibility of micro-energy storage devices (MESDs). Unique porosity, superior flexibility and comfortable breathability make the textile-based structure a great potential in wearable MESDs. Herein, a timely and comprehensive review of this field is provided according to recent research advances. The following aspects, device construction of textile-based MESDs (TMESDs), fabric processing of textile components and smart functionalization (e.g., mechanical reliability, energy harvesting, sensing, self-charging and self-healing, etc.) are discussed and summarized thoroughly. Also, the perspectives on the microfabrication processes and multiple applications of TMESDs are elaborated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...